
1. Introduction

Traditionally, forecast evaluation has focused on mea-
sures of quality; recently, more attention has been paid
to measures of forecast value. The value approach
directly involves the forecast user and the decisions he
or she must make given the forecast information.
Frequently, this is done in the framework of the cost-
loss problem (Thompson & Brier 1955), in which the
forecast value is expressed as a function of a forecast
user’s cost of taking preventative action to the loss
incurred when no action is taken and adverse weather
occurs. The cost-loss problem is a special case of the
more general 2×2 decision problem, in which protec-
tion against a loss is not perfect (e.g. Roebber & Bosart
1996). Richardson (2000) has shown that, for the com-
plete range of users having simple 2×2 decision prob-
lems, the maximum value of a forecast (relative to the
value of climatological forecasts) is given by Peirce’s
skill score (Peirce 1884), thus showing a connection
between the traditional and more recent approaches to
forecast evaluation. This paper will demonstrate a par-
allel equivalence between the range of users for whom
the forecast provides positive relative value and
Clayton’s skill score (Clayton 1934).

2. Derivation

The basic framework of the forecast and decision prob-
lem for the 2×2 case is illustrated in Tables 1 and 2,
showing the decision and forecast verification prob-
lems, respectively, where we assume that all of the
numbers can take on non-zero values. (Note that these
tables are defined differently in Richardson (2000).)
Frequently, the decision process is defined negatively
in terms of costs and losses (as described in the pre-
ceding paragraph). However, this description is a sub-
set of the more general utility approach (e.g. benefit is
obtained by taking preventative action when an event

occurs and loss is incurred by taking preventative
action when an event does not occur) that will be
employed in this paper. The results of the following
analysis are independent of the description used.

A decision maker in the 2×2 problem is faced with the
decision of whether to take preventative action against
an adverse weather event given a particular forecast. To
illustrate, consider a child’s roadside lemonade-stall in
a neighbourhood where 20 cups can be sold if the tem-
perature exceeds 30 ºC, but only 5 cups can be sold
otherwise. Thus, the forecast event is whether temper-
atures will fail to exceed 30º C. From Table 1, A rep-
resents profit realised when preventative action was
taken (only 5 cups of lemonade were prepared) and the
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Table 1. The 2×2 decision problem expressed in terms of
utility.

Events

Yes No

Protect Yes A B

No C D

Table 2. The 2×2 forecast problem expressed in terms of
joint and marginal relative frequencies.

Observed

Yes No

Forecast Yes a b a + b = f

No c d c + d = 1 – f

a + c = p b + d = 1 – p 1



event occurred. In this scenario, A will be greater than
B, in which the profit is tempered by the lost revenue
that could have been realised had the additional 15 cups
of lemonade been prepared. Similarly, the utility of C
will be equal to the revenue of 5 cups sold minus the
cost of preparing the additional 15 cups of unsold
lemonade. Maximum utility is achieved in scenario D
in which a full 20 cups are sold. The exact relationship
between the four utilities will depend upon user-
specific details – in the case presented here, the cost of
preparing each cup of lemonade and the revenue
realised from each sale.

The potential value derived from a forecast involves the
interaction between the quality of the forecast and the
utility distribution of the user. A 2×2 contingency table
relating the forecasts and observed weather, similar to
the decision table, can be developed as well (Table 2).
At the extremes, if a user always protected the expected
utility would be

Uprotect = pA + (1 – p)B, (1)

while the expected utility achieved by never protecting
would be

Uno protect = pC + (1 – p)D, (2)

where p = a + c is the climatological frequency of the
event. From these, one can determine that the expected
utility of climatological forecasts is given by

Uclim = max{pA + (1 – p)B, pC + (1 – p)D} (3)

where max{} indicates that we want to take the maxi-
mum of the two values. The decision of whether to
always protect or never protect depends on the clima-
tological frequency of the event (or base rate), α; specif-
ically, protection should be taken if

(4)

Provided with perfect forecasts, the user will always
protect when the event occurs and never protect when
it does not occur, and so the expected utility of the
forecasts is given by

Uperf = pA + (1 – p)D. (5)

More generally, the expected utility of forecasts is given
by the weighted sum of the probability of the utility
associated with that forecast/event combination,

Ufore = aA + bB + cC + dD. (6)

We can set up a standard skill score expression (Wilks
1995) for the potential value of the forecasts with
respect to climatology:

(7)

Plugging (3), (5), and (6) into (7), we get

(8)

2.1 Maximum value and Peirce’s skill score

First we will recast Richardson’s (2000) derivation con-
necting the maximum possible relative value and
Peirce’s skill score. Toward this end, consider the solu-
tion to this for each argument in the max{} expression
separately. Taking the first argument, corresponding to
the case where p > α indicating that a climatological
forecast dictates that the user should always protect,
we get

(9)

To help simplify this expression we can use some iden-
tities from the 2×2 forecast problem (Table 2).
Specifically, the probability of detection, the fraction
of ‘yes’ events associated with ‘yes’ forecasts, is defined
as POD = a/(a + c) = a/p and the probability of false
detection, the fraction ‘no’ events associated with ‘yes’
forecasts, is defined as POFD = b/(b + d) = b/(1 – p).
(More commonly, in this context, the names hit-rate,
H, and false alarm-rate, F, are used for POD and
POFD, respectively. However, this has led to some
confusion since both H and F have received other
definitions as well (see Wilks (1995: 240–1)), and so
H and F will not be used here.) From these, we have
a = pPOD, b = (1 – p)POFD, c = p(1 – POD), and d
= (1 – p)(1 – POFD). Substituting these expressions
into (9) and regrouping, we have

(10)

Dividing the numerator and denominator by (D – B)
+ (A – C) and substituting α into the result gives

(11)

If we evaluate (8) for the second argument of max{},
the case where p < α, indicating that a climatological
forecast dictates that the user never protects against the
hazard, we get

(12)
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A plot of Vrel as a function of α (Fig. 1) shows that this
maximises at p = α (= 0.2). At this point, the maximum
value is given by

max{Vrel} = POD – POFD. (13)

The right-hand side of (13) is equal to Peirce’s skill
score, and so the maximum relative value of forecasts
for the 2×2 decision problem is given by Peirce’s
skill score. Richardson (2000) notes that, while the
location of the relative maximum value along the ordi-
nate of Fig. 1 is determined by p, the magnitude of
max{Vrel} is independent of p, as can be readily seen
from (13).

2.2 Range of positive value and Clayton’s skill
score

The range of users for which the forecasts have posi-
tive value is also of interest. The bounds can be found
by setting the numerator of (8) to zero and solving
for α. For the first argument of the max{} function, we
get

aA + bB + cC + dD = (a + c)A + (b + d)B

or, simplifying

c(A – C) = d(D – B). (14)

Dividing by (D – B) + (A – C) and substituting α
as appropriate, this becomes the lower bound for α,
αmin

αmin = c/(c + d) = DFR (15)

where DFR is the detection failure ratio (Doswell et al.
1990), the fraction of ‘yes’ events associated with ‘no’
forecasts. For the other argument in (8), the similar
expression for the upper bound for users who find the
forecasts valuable, αmax, is

αmax = a/(a + b) = FOH (16)

where FOH is the frequency of hits (Doswell et al.
1990), the fraction of ‘yes’ events associated with ‘yes’
forecasts. Thus the width of the interval of users
(expressed as a function of their utility ratio α) who
find the forecasts valuable is given by

Vwid = αmax – αmin = FOH – DFR. (17)

The right-hand side of (17) is Clayton’s skill score and
thus (perhaps not aware of this himself) Clayton was
successful in satisfying one of the properties he iden-
tified as desirable in a verification method, namely, the
‘ability to ascertain at which point weather forecasts
cease to have value’ (Murphy 1996: 9; Clayton 1889).
Richardson (2000) provided equivalent definitions to

(15) and (16), but stopped short of (17) and the con-
nection to Clayton’s skill score.

2.3 Extension to probabilistic forecasts

The use of probabilistic forecasts (such as those derived
from an ensemble system) presents a more complicated
system than the 2×2 forecast problem that has been dis-
cussed to this point. However, evaluation of a proba-
bilistic forecast can be divided into a series of 2×2
problems based on the set of possible forecast proba-
bility thresholds, pt. Curves of relative value, such as
in Figure 1, can be plotted for each pt (Figure 2). The
curve representing the relative value of the probabilis-
tic system as a whole is simply the envelope of these
individual curves, i.e. for each α, an appropriate pt is
chosen so as to maximise the value at that point. As
shown by Richardson (2000), this means that the deter-
mination of the maximum relative value extends nat-
urally from the deterministic to the probabilistic case,
namely,

Vmax = maxpt
{POD – POFD} = maxpt

{PSS}
= PSSmax, (18)

where PSS is Peirce’s skill score and maxpt
{}the maxi-

mum over all probability thresholds. The width of the
interval of utility ratios for which users derive value
from the forecasts can also be extended to the proba-
bilistic case, but not as cleanly. The leftmost and right-
most points of this interval can be determined by
applying the approach of (18) to (15) and (16),

αmin = minpt
{DFR} αmax = maxpt

{FOH}, (19)

but there is no reason to expect that the DFR will be
minimised at the same probability threshold for which
FOH is maximised (see Figure 2) and so

Vwid = αmax – αmin = maxpt
{FOH} – minpt

{DFR}
≠ maxpt

{CSS}, (20)

where CSS is Clayton’s skill score and the ≠ is used in
the general sense of ‘not necessarily equal to’ and is not
meant to imply that the DFR and FOH will never be
optimised for the same probability threshold. There-
fore, the endpoints of the interval of positive relative
value must be computed separately.

3. Discussion

Murphy (1996) examined the similarities and differ-
ences between skill measures derived from the 2×2
forecast problem. For this discussion, it is useful to
rewrite (13) and (17) in terms of elements in Table 2:

Vmax = POD – POFD = (ad – bc)/[p(1 – p)] (21)
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Vwid = FOH – DFR = (ad – bc)/[f(1 – f)]. (22)

Note that the numerator in each expression is identi-
cal and is simply the determinant of the 2×2 matrix in
Table 2 (and so positive Vmax ensures positive Vwid, and
vice versa). Thus the difference between the two mea-
sures is due solely to their denominators: for Vmax the
denominator is the product of the marginal frequen-

cies of occurrence and non-occurrence of the event,
while for Vwid the denominator is the product of the
marginal frequencies of occurrence and non-occur-
rence of a ‘yes’ forecast. Thus, Vmax and Vwid can both
be expressed in terms of conditional relative frequen-
cies. Specifically, Vmax measures the difference between
the conditional relative frequency that a ‘yes’ forecast
was issued prior to an event occurring (POD) and the
conditional relative frequency that a ‘yes’ forecast was
issued prior to an event not occurring (POFD), the for-
ward looking conditional probabilities (the calibration-
refinement factorisation). In contrast, Vwid measures
the difference between the conditional relative fre-
quency that an event occurred following a ‘yes’ fore-
cast (FOH) and the conditional relative frequency that
an event occurred following a ‘no’ forecast (DFR), the
backward looking conditional probabilities (the likeli-
hood-baserate factorisation). The denominators in (21)
and (22) are in the form of a binomial variance and so
high uncertainty (p or f = 0.5) reduces the potential
value of a forecast system while rare events (p or f
small) present an opportunity for providing more value
to more users. In other words, for a given determinant
of the 2×2 table (the numerator, ad – bc), the maximum
relative value depends on the distribution of the obser-
vations while the range of users for whom the forecast
provides positive value depends on the distribution of
the forecasts.

The components of PSS and CSS can also be related to
the odds ratio (Stephenson 2000) and thus the odds
ratio also provides information on the value of a fore-
cast system. Namely, the requirement for a forecast
system to provide value to at least one user, Vwid > 0
or FOH > DFR, could also be expressed as

FOH / DFR = (a/b + θ)/(a/b + 1) > 1, (23)

where θ = ad/bc is the odds ratio. In other words, θ >
1 signifies that the range of users who find value in the
forecasts is non-zero. Similarly, instead of computing
the difference between POD and POFD one can look
at their ratio,

POD / POFD = (a/c + θ )/(a/c + 1) > 1, (24)

and so Vmax > 0 when θ > 1. Therefore, the odds ratio
provides information on the existence of positive value
but not its extent or the range of users for whom value
exists.

It is interesting to note that for unconditionally unbi-
ased forecasts (p = f), Vmax = Vwid, and so improving
the forecasts of an unbiased system will increase
equally the maximum value and width of the interval
of users who find the forecasts valuable. Also, Murphy
pointed out that the product of Peirce’s skill score and
Clayton’s skill score (or Vmax * Vwid) is equal to the
binary-event version of the Pearson product-moment
correlation coefficient (r), and so these scores represent
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Figure 1. Example plot of relative value (solid) as a function
of utility for a forecast with POD = 0.7 and POFD = 0.02.
Dotted line denotes the climatological event frequency (p =
0.2). Note that the value is maximised when the utility is equal
to climatological frequency.
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Figure 2. Example plot of relative value as a function of util-
ity for five different probability thresholds (thin) and the max-
imum value of the probabilistic forecast system (thick). (POD,
POFD) pairs for the five decision points are (0.5, 0.1), (0.6,
0.15), (0.7, 0.2), (0.8, 0.25), and (0.9, 0.3). The climatological
frequency is 0.3.



not only a connection between skill and value, but also
between these two aspects of forecast quality (skill and
value) and association.
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